If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2-80y+64=0
a = 25; b = -80; c = +64;
Δ = b2-4ac
Δ = -802-4·25·64
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$y=\frac{-b}{2a}=\frac{80}{50}=1+3/5$
| 187+8x=23x-158 | | (2-a)^2+(a-1)^2+1=6 | | 18x-228=190-x | | -x-4/7=x+12+4/7 | | 1.65+d=1.25 | | x+.15x=230 | | 18x-228=190 | | 2(x-2)^2+7(x-2)-15=0 | | .40+n=2.25 | | 29-6x=8x+15 | | 7/8k-1/3=1/2 | | 8×2+10x=8x | | -31/4=1/3x23/4 | | 146-2x=106 | | 2-106x=146 | | 3/8x-1/2=1/3 | | 106-2x=146 | | 3/4d-1/6=1/5 | | 5(n-3)=5n-3n-6 | | (x−78)+43=16 | | n/3-5=16 | | 20x=x(20-4)+6 | | 6y-5=9y+7 | | 10x-2-2(4x)=0.8 | | 3/n-5=16 | | 5x-2(x+7)=4x-1 | | 5n-15=5n-3n-6 | | 12x+7x=28 | | -24-1/8p= | | 5-2/n=12 | | 5/n-2=12 | | 3(b-3)=15 |